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A Parallel High-Order Accurate Finite Element Nonlinear
Stokes Ice Sheet Model and Benchmark Experiments

Wei Leng,1 Lili Ju,2 Max Gunzburger,3 Stephen Price,4 and Todd Ringler4

Abstract. The numerical modeling of glacier and ice sheet evolution is a subject of grow-
ing interest, in part because of the potential for models to inform estimates of global sea-
level change. This paper focuses on the development of a numerical model that deter-
mines the velocity and pressure fields within an ice sheet. Our numerical model features
a high-fidelity mathematical model involving the nonlinear Stokes system and combina-
tions of no-sliding and sliding basal boundary conditions, high-order accurate finite el-
ement discretizations based on variable resolution grids, and highly scalable parallel so-
lution strategies, all of which contribute to a numerical model that can achieve accurate
velocity and pressure approximations in a highly efficient manner. We demonstrate the
accuracy and efficiency of our model by analytical solution tests, established ice sheet
benchmark experiments, and comparisons with other well-established ice sheet models.

1. Introduction

Over the few past decades, numerical simulations of
glacier and ice sheet evolution have been a subject of grow-
ing interest, in part due to their potential for informing esti-
mates of global sea-level change [Alley et al., 2005; Gregory
and Huybrechts, 2006; Bamber et al., 2007; Shepherd and
Wingham, 2007]. Among the different approaches available,
the three-dimensional nonlinear Stokes equations (hereafter
simply referred to as the Stokes equations) provide the most
accurate and complete description of momentum balance
for modeling the flow of land ice [Blatter , 1995; Hindmarsh,
2004; Le Meur et al., 2004; Pattyn, 2003; Pattyn et al., 2008;
Gagliardini et al., 2008]. Stokes ice sheet modeling is re-
quired to take full advantage of recent advances in both the
coverage and spatial resolution of ice sheet geometry data. It
is also required to provide accurate results in regions where
steep topography and low aspect ratios are inherent in the
problem, where the aspect ratio is defined to be the ratio of
the horizontal to the vertical extents of the ice sheet. For
example, for the Jakobshavn outlet glacier trough in Green-
land, a recent high-resolution data set suggests basal topog-
raphy with slopes as large as 45 degrees [Plummer and van
der Veen, 2011]. For slopes of this magnitude, the sliding
speeds predicted by the Stokes-flow model and a first-order
model differ by a factor of 4, whereas those for the Stokes-
flow model and a zeroth-order (“shallow ice”) model differ
by a factor of 8 [Dukowicz et al., 2011]. Stokes ice sheet
modeling is also needed to take full advantage of more com-
plex basal boundary conditions, for example any boundary
condition that does not assume a hydrostatic pressure dis-
tribution at the ice-bed interface.
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A number of recent studies demonstrate the limitations
and errors inherent when lower-order approximations, i.e.,
simplifications, of the Stokes equations are applied to real-
istic problems of land ice flow. These include, for example,
applications in areas where the bedrock topography is steep,
the ice thickness changes considerably over short length
scales, or the aspect ratio of the domain under consideration
or of important local features is of order one [Hindmarsh,
2004; Le Meur et al., 2004; Zwinger et al., 2007; Pattyn et
al., 2008]; in studies of ice sheet grounding line behavior,
where lower-order approximations may be inaccurate due to
complicated geometries and changes in the amount of basal
slip [Durand et al., 2009; Morlighem et al., 2010]; and at ice
sheet flow divides, where flow modeling is crucial for inter-
preting ice-core derived paleoclimate records [Price et al.,
2007; Neumann et al., 2008] and where lower-order approx-
imations are not sufficient to accurately describe the flow
field [Martin et al., 2009]. Further, models based on reduc-
tions of the Stokes equations often have complex boundary
conditions that are simplifications (based on integral aver-
ages and scaling analyses) of the boundary conditions one
is able to impose for the Stokes formulation. The bound-
ary conditions for the Stokes formulation are directly tied
to full, three-dimensional stress and velocity fields and are
therefore more accurate than those applied under simplified
formulations.

In addition to the importance of solving the Stokes equa-
tions, studies show that high-quality, adaptive, variable res-
olution meshes are necessary to manage computational costs
whereas accurately capturing essential dynamic behaviors,
such as the spatial variability in flow velocities, sensitivi-
ties to meltwater and subglacial sediments, and behavior at
ice sheet grounding lines [Schoof , 2007; Nick et al., 2009;
Goldberg et al., 2009; Durand et al., 2009; Morlighem et al.,
2010]. Mesh adaptivity is also useful for incorporation of
better geometric resolution of ice sheet boundaries, which
calls for fine grids near the boundary but not necessarily in
the interior. Moreover, as the complexity of physical pro-
cesses included in large-scale models is expected to increase
in the future, for example through the inclusion of evolu-
tionary basal hydrology and basal process models, the capa-
bility to focus resolution locally and adaptively will become
increasingly important for both obtaining accurate solutions
and for reducing the computational costs associated with a
three-dimensional Stokes solution (as compared to the use
of a quasi-uniform mesh).

Whereas a number of numerical methods, such as fi-
nite differences, finite volumes, and finite elements, have
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been used for ice sheet modeling, it is not always obvious
which of these methods is best suited for the considera-
tions discussed above, particularly when considering large-
scale, high-resolution, time-evolving simulations of realistic
glaciers and ice sheets. High-order accurate numerical dis-
cretizations and highly scalable parallel solvers become not
only desirable, but necessary; the former can greatly reduce
the size of the resulting discrete system while maintaining
comparable solution accuracy whereas the latter can take
full advantage of modern high-performance computing ar-
chitectures. We note that “high-order accurate” refers to
accuracy of the discretization as opposed to “higher-order
model” [Pattyn, 2003] for ice sheet modeling which refers to
a simplification of the Stokes model.

Finite element methods are, in general, more suitable,
compared to other methods, for problems with complex ge-
ometries and complex boundary conditions. Highly variable
resolution grids that conform to the boundary are needed,
and finite element methods that do not suffer a loss of ac-
curacy on such meshes are relatively easy to design. For
ice sheet modeling this is especially important because the
boundary geometry can be very irregular and made up of
many short segments with both acute and obtuse angles.
Also, not only are there Neumann-type boundary conditions
at, e.g., the ice-atmosphere boundary, but the boundary
condition at the ice-bedrock boundary can involve a very
complex, nonlinear sliding condition. These boundary con-
ditions can be incorporated into variational formulations of
the problem (that form the basis of finite element methods)
in a rather straightforward manner, as discussed further in
Section 2.3. Thus, in this paper, we focus on the devel-
opment of an accurate, efficient, parallel Stokes solver for
large-scale ice sheet modeling using high-order-accurate fi-
nite element methods.

In a previous paper by Zhang et al. [2011], the au-
thors also considered a three-dimensional, finite element dis-
cretization of the nonlinear Stokes equations for ice sheets.
The current paper differs in several important ways. First,
in Zhang et al. [2011], only second-order accurate, piecewise-
linear finite element (P1-P1) discretizations were considered,
whereas here we consider third-order accurate discretiza-
tions for the velocity field. In Section 4.1, we show that
there are clear advantages to the latter. Second, in Zhang
et al. [2011], a penalty method was used to stabilize the fi-
nite element method; this introduces a non-physical penalty
parameter into the problem that not only affects accuracy,
but also the conditioning of the linear systems to be solved.
The finite element method used here does not require stabi-
lization and so there is no need to introduce a penalty term
for stabilization. Third, in Zhang et al. [2011], only the no-
sliding condition is used at the basal boundary whereas here
we consider sliding boundary conditions as well. Thus, the
current paper represents a significant improvement over the
model presented in Zhang et al. [2011]. As is demonstrated
below, all of these improvements result in lower computa-
tional cost and higher accuracy in realistic glacier and ice
sheet simulations.

Finite element discretizations were used for glaciology in
Truffer et al. [2003]; an important advance presented in
this paper is the use of these discretization techniques on
a very large spatial scale. Specifically, we explore the use of
quadratic finite element velocity approximations. We note
that penalization is not the only means for stabilizing the
use of linear velocity approximations. The use of finer veloc-
ity grids (relative to the pressure grid) or “bubble functions”
to enhance the velocity space can also be used for stabiliza-
tion. Such enhancements increase the number of degrees
of freedom for the velocity (so that they are approximately
equivalent to the Taylor-Hood element we use) without a
commensurate increase in accuracy. A final note is that the
use of high-order accurate finite element discretizations of-
ten requires a more costly matrix assembly, mainly because

of high-order accurate quadrature rules. However, for the
Stokes problem, and assuming that one does not want to use
penalization-based stabilization (e.g., because of the difficul-
ties and inaccuracy it can cause solvers), the other available
stabilization approaches for linear velocity approximations
involve velocity grid refinement or higher degree polynomial
bubble functions, both of which also require more quadra-
ture points during the assembly process.

The paper is organized as follows. In Section 2, we pro-
vide a short review of the nonlinear Stokes ice sheet model,
including the governing equations and boundary conditions.
We also define a variational formulation of the Stokes sys-
tem which is used in Section 3.1 to define high-order accu-
rate finite element discretizations and to define the corre-
sponding discretized systems. During the development of
the high-order accuracy finite element model in Section 3,
we also discuss the process for generation of variable res-
olution, anisotropic, tetrahedral and layered grids (Section
3.1.1), the preconditioning techniques, and parallel solver
implementation used in our solution process (Section 3.2).
In Section 4, we first demonstrate the high-order numeri-
cal accuracy of our Stokes solver through an example with
an analytic (manufactured) solution. We then provide a
comparison between our model results and those from the
ISMIP-HOM benchmark experiments [Pattyn et al., 2008].
The performance and parallel scalability of our model are
studied in Section 5 and some concluding remarks are given
in Section 6.

2. The nonlinear Stokes ice sheet model
2.1. Governing equations

The dynamical behavior of ice sheets is modeled by the
Stokes equations for an incompressible viscous fluid with a
nonlinear rheology, i.e., a nonlinear constitutive law is as-
sumed. Letting [0, tmax] denote the time interval of interest
and Ωt the three-dimensional spatial domain occupied by
the ice sheet, we then have

∇ · σ + ρg = 0 in Ωt × [0, tmax], (1)

∇ · u = 0 in Ωt × [0, tmax], (2)

where u = (ux, uy, uz)
T denotes the velocity, σ the full stress

tensor, ρ the density of ice, and g = (0, 0,−�g�) the gravita-
tional acceleration. The stress tensor σ can be decomposed
in terms of the deviatoric stress τ and the isotropic pressure
p as

σ = τ − pI or σij = τij − pδij , (3)

where p = − 1
3 tr(σ), δij denotes the Kronecker delta tensor,

and I the unit tensor. Combining (1) and (3), we obtain the
instantaneous momentum balance equation

−∇ · τ +∇p = ρg in Ωt × [0, tmax]. (4)

The strain-rate tensor ε̇u is defined as

(ε̇u)ij =
1
2

�
∂ui

∂xj

+
∂uj

∂xi

�
. (5)

The constitutive law for ice relates the deviatoric stress ten-
sor τ to the strain-rate tensor ε̇u by the generalized Glen’s
flow law [Nye, 1957; Paterson, 1994]

τ = 2ηuε̇u (6)

with

ηu =
1
2
A−1/n�̇(1−n)/n

e , (7)
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where n is referred to as the power-law exponent, A as the
deformation rate factor, ηu as the effective viscosity, and �̇e
as the effective strain-rate defined by

�̇e =
�

1
2 ε̇u : ε̇u. (8)

The deformation rate factor A depends on temperature
and pressure, and possibly on other properties such as ice-
crystal size and orientation and impurity content [Paterson,
1994]. In Zhang et al. [2011], it is assumed that A depends
only on temperature and obeys an Arrhenius relation de-
fined by

A = A(T ) = a exp (−Q/RT ) ,

where a is an empirical flow constant often used as a tun-
ing parameter, Q denotes the activation energy for creep, R
denotes the universal gas constant, and T denotes the abso-
lute temperature measured in degrees Kelvin. Because our
study mainly focuses on building a numerical Stokes model
for ice sheet dynamics, in this paper we assume an isother-
mal system in which A is a spatially uniform constant, i.e.,
we do not couple flow and temperature evolution by solving
an equation for conservation of energy. More general cases
will be treated in future work.

If the top surface of the ice sheet is allowed to evolve in
time, then a prognostic equation describing the evolution
of that free surface should also be included. The ice sheet
domain Ωt at a time t can be defined as

Ωt = {(x, y, z) | zb(x, y) ≤ z ≤ zs(x, y, t),
(x, y) ∈ ΩH , t ∈ [0, tmax]}

(9)

where ΩH denotes the horizontal extent of the ice sheet,
zs(x, y, t) defines the top surface elevation, and zb(x, y)
defines the bed elevation. Note that here zb(x, y) is as-
sumed to be fixed with respect to the time, i.e., neither
isostatic rebound or erosion is considered. We denote the
top surface as Γs and the bottom surface as Γb. In general,
zb(x, y) �= zs(x, y, t) along the boundary of ΩH so that the
ice sheet may also have a lateral boundary Γ�. The motion
of the free surface is governed by the kinematic relation

∂zs
∂t

+ ux(x, y, zs)
∂zs
∂x

+ uy(x, y, zs)
∂zs
∂y

−uz(x, y, zs) = b(x, y, zs, t)
(10)

on the top surface Γs, where b(x, y, zs, t) represents the sur-
face mass balance. In general, b �= 0 because of accumulation
and ablation at the top surface.

2.2. Boundary conditions

At the top surface of the ice sheet, we impose the bound-
ary condition

σ · n = −patm · n on Γs, (11)

where n denotes the outer normal unit vector at the ice sheet
boundary and patm the atmospheric pressure. Because at-
mospheric pressure is negligible relative to pressure within
the ice column, we make the standard simplification that
patm = 0.

Along the lateral boundary Γ�, we impose one of three
types of boundary conditions; a condition such as (11), the
zero velocity condition u = 0, or periodic boundary condi-
tions. Having this flexibility allows us to not only model
realistic ice sheets, but also to apply our approach to bench-
mark examples for which the latter two non-physical bound-
ary conditions are used. Note that in our current model and
experiments we do not consider the case for which the lateral

boundary is partially submerged in water such as occurs at
an ice-ocean boundary.

The bottom surface of the ice sheet can be decomposed
into two parts, Γb,fix at which the ice sheet is fixed to the
bottom bedrock and Γb,sld at which it is allowed to slide.
On the fixed part of the basal boundary, we impose the zero
velocity boundary condition

u = 0 on Γb,fix, (12)

which includes the no-penetration condition u · n = 0 and
the no-sliding condition u×n = 0. On the sliding part of the
basal boundary, we impose the Rayleigh friction boundary
condition

u · n = 0 and n · σ · t = −β2
u · t on Γb,sld. (13)

We note that other type of friction laws such as Coulomb’s
law can be applied on Γb,sld; see [e.g., Truffer et al., 2001;
Burstedde et al., 2009; Schoof , 2006, 2010]. Here, we con-
sider the Rayleigh friction law largely to allow for compar-
ison with benchmark experiments. The parameter β2 de-
notes a given sliding coefficient and t denotes any unit vec-
tor tangential to the bottom surface. Note that the negative
sign in (13) implies that the direction of the friction force is
opposite to that of the velocity.

2.3. Variational formulation

Finite element discretizations are based on variational for-
mulations of the partial differential equation system; in this
section, we derive a variational formulation of the Stokes
system (2) and (4) along with appropriate boundary condi-
tions.

Let L2(Ωt) denote the space of square-integrable func-
tions with respect to Ωt. Let H

1(Ωt) denote the space of
vector functions each of whose components belong to the
space H1(Ωt) that consists of functions belonging to L2(Ωt)
whose first derivatives also belong to L2(Ωt). Multiply (4)
by a test function v ∈ H1(Ωt), then integrate the result over
Ωt. Integration by parts results in
�

Ωt

τ : ∇v dx−
�

Ωt

p∇ ·v dx−
�

Γ

n ·σ ·v ds = ρ

�

Ωt

g ·v dx,

(14)
where Γ = Γs ∪ Γb ∪ Γ� and τ : ∇v denotes the sum of
the element-wise products of the tensors τ and ∇v. Note
that because of the symmetry of the stress tensor τ , we
have τijvi,j = τjivj,i = τijvj,i, where we use the repeated
index summation convention and vi,j = ∂vi/∂xj . Then,
τijvi,j = 1

2τij(vi,j + vj,i) = τij(ε̇v)ij = 2ηu(ε̇u)ij(ε̇v)ij ,
where for the last equality we use (6). Thus, we have

�

Ωt

τ : ∇v dx =

�

Ωt

2ηuε̇u : ε̇v dx. (15)

From (11) with patm = 0, we have

�

Γs

n · σ · v ds = 0. (16)

If a condition such as (11) is imposed on Γ�, we also have
(with patm = 0)

�

Γ�

n · σ · v dx = 0. (17)

If a periodic boundary condition is applied on Γ�, we require
that the test functions v be periodic and then (17) holds as
well. If the zero velocity boundary condition is applied on
Γ�, we require v = 0 on Γ� so that (17) still holds.
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On the no-sliding part Γb,fix of the basal boundary, we
require that the test function satisfy v = 0 so that

�

Γb,fix

n · σ · v ds = 0. (18)

On the sliding part Γb,sld of the basal boundary, because
u · n = 0, we require the test function to satisfy v · n = 0.
Together with the friction law in (13), we then have that

�

Γb,sld

n · σ · v ds = −
�

Γb,sld

β2
u · v ds. (19)

Let

�H(Ωt) = {u ∈ H
1(Ωt) | u|Γl∪Γb,fix = 0, (u · n)|Γb,sld = 0}.

Note that functions in �H(Ωt) satisfy homogeneous boundary
conditions on the indicated parts of the boundary. Substi-
tuting (15)–(19) into (14), we obtain the weak formulation
of the nonlinear Stokes model (2) and (4) along with the
boundary conditions: seek u ∈ �H(Ωt) and p ∈ L2(Ωt) such
that






�

Ωt

2ηuε̇u : ε̇v dx+

�

Γb,sld

β2
u · v ds

−
�
Ωt

p∇ · v dx = ρ

�

Ωt

g · v dx,

−
�

Ωt

q∇ · u dx = 0,

(20)

for all v ∈ �H(Ωt) and q ∈ L2(Ωt). Specifically, (20) corre-
sponds to a zero velocity lateral boundary condition. If a
lateral boundary condition similar to (11) with patm = 0 is
imposed instead, then the requirement that the functions in
�H(Ωt) vanish on Γ� is removed. If periodic lateral boundary
conditions are imposed, then that requirement is replaced by
the requirement that the functions in �H(Ωt) be periodic.

If the free-surface equation (10) is used to evolve the ice
sheet, then its weak form is to find zs ∈ H1(ΩH), such that

�

Γs

∂zs
∂t

ψ ds =

�

Γs

�
uz − ux

∂zs
∂x

− uy

∂zs
∂y

+ b

�
ψ ds,

for all ψ ∈ H1(ΩH). Temporal discretization is effected by
first dividing the time interval [0, tmax] into K subintervals
{[tk−1, tk]}Kk=1, where tk = k∆t and ∆t = tmax/K. Then,
a semi-discrete (in time) variational problem using the for-
ward Euler scheme is to seek zk+1

s on Γs,tk such that

�

Γs,tk

zk+1
s ψ ds =

�

Γs,tk

zksψ ds+

�

Γs,tk

∆t

�
uk

z − uk

x

∂zks
∂x

− uk

y

∂zks
∂y

+ bk
�
ψ ds,

(21)

for k = 0, 1, · · · ,K − 1 where zks denotes the top surface
height at time tk, b

k the surface mass balance at tk, Γs,tk

the top surface of the ice sheet at tk, and z0s is given as an
initial condition.

3. High-order accurate finite element Stokes
ice sheet model

In this section, we provide a detailed description of the
high-order accurate finite element Stokes ice sheet model. In
Section 3.1, we discuss the finite element discretization, lead-
ing to the nonlinear system of discrete equations that have
to be solved to determine approximate solutions. Section

3.1 also includes a discussion of the Picard linearization of
the nonlinear discrete system as well as other details about
the discretization process. Then, in Section 3.2, we pro-
vide details about the efficient parallel algorithm we use to
solve the linear algebraic systems resulting from the Picard
linearization. The finite element discretization and parallel
linear system solvers together form our numerical Stokes ice
sheet model.

3.1. High-order accurate finite element discretization

3.1.1. Tetrahedral grid generation
The geometry of ice sheets such as Greenland and Antarc-

tica is highly anisotropic, with representative horizontal to
vertical length scales having ratios from 100 : 1 to 1000 : 1.
Moreover, in large portions of the ice sheets, variations
in descriptive variables in horizontal directions are much
smaller than those in the vertical direction. As a result,
the use of three-dimensional isotropic meshing of the highly
anisotropic geometry would result in a huge number of grid
points and therefore, many more degrees of freedom then is
necessary or viable. Therefore, anisotropy of the computa-
tional grid is called for when obtaining high-order accurate
solutions with relatively few degrees of freedom. Except
near the ice sheet boundaries and in areas of concentrated
flow (e.g., ice streams and outlet glaciers), solutions are ex-
pected to vary much more slowly in the horizontal directions
than in the vertical direction. This allows for relatively large
grid spacing in the horizontal direction over large regions of
the ice sheets where the solution is mostly slowly varying.
Also note that the high aspect ratio of ice sheets cannot
be avoided merely through rescaling of the vertical coordi-
nate; doing this can indeed improve the domain aspect ratio,
but it also changes the coefficients in the partial differential
equations so that the physical aspect ratio will still appear
in detrimental ways in the discretized systems.

Due to the high aspect ratio of the ice sheet, which re-
sults in the need for high-aspect ratio anisotropic grids, some
special treatment during the generation of tetrahedral grids
is needed to avoid low-quality elements. Our approach is
to first generate a high-quality, two-dimensional triangular
grid for the horizontal extent of the ice sheet ΩH , see Zhang
et al. [2011] and the references cited therein; we denote the
two-dimensional mesh by Qh. The two-dimensional grid is
then transformed to a three-dimensional surface triangular
grid for the top surface of the ice sheet by adding the z-
coordinate obtained from the topography of the bedrock to
which the ice thickness is added. We then produce a fully
three-dimensional, layered, prismatic mesh of the ice sheet
domain Ωt by subdividing the thickness at each horizon-
tal grid point into equal increments so that the number of
vertical increments is the same at each grid point of the hori-
zontal mesh. Finally, we obtain a tetrahedral grid of the ice
sheet by decomposing each of the prismatic elements into
three tetrahedra.

In general, the top surface of the ice sheet evolves in
time, after the computation of the top surface elevation zs;
see Section 3.1.5. To avoid grid distortion, the grid points
should be redistributed according to the change in the ice
thickness. Linear or nonlinear elasticity analogs could be
used to deform the mesh. Here, for simplicity, a linear map-
ping is applied to determine the z-coordinates of the mesh
vertices at each time step for which vertical regridding takes
place. The governing equation is given by

∂Z
∂z

= 1 on Ωt,

Z = zs on Γs,

Z = zb on Γb,

(22)
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where Z denotes the z-coordinate of the mesh vertices. If
the initial mesh is uniform in the z direction at each horizon-
tal grid point, this linear mapping ensures that subsequent
meshes are likewise uniform in the z direction.

Because the ice sheet margin can advance or recede,
mechanisms should also be introduced to deal with lateral
changes in thickness and domain extent. The examples
considered in this paper do not experience such thickness
changes, so our current Stokes model has not incorporated
such mechanism. However, when necessary, e.g., when con-
sidering realistic ice sheets and and when coupling ice sheet
dynamics with ice sheet energetics, such changes are allowed
to occur. They can be dealt with by, e.g., allowing for
the deletion or addition of elements in the vertical direc-
tion when the ice thickness becomes too small or too large,
respectively. Such mechanisms will be incorporated into our
thermo-mechanical model in the future.

The examples used in our numerical studies in Section
4 involve periodic boundary conditions in at least some di-
rections. It is useful for grids to match at opposite ends of
the computational domain in directions for which periodic
boundary conditions are applied. Otherwise, enforcing the
periodicity, including the periodicity of test and trial func-
tions (see Section 2.3), would require interpolations that
can introduce significant errors. In our numerical experi-
ments, because of the simple geometries and solution fea-
tures, quasi-uniform grids are appropriate; such grids also
facilitate easy matching of grids at periodic boundaries. In
ongoing work, the codes we are developing for the Green-
land and Antarctic ice sheets use highly nonuniform grids
and in these cases periodicity is not an issue.
3.1.2. Finite element discretization of the Stokes sys-
tem

Let Th denote a tetrahedral triangulation of the ice sheet
domain Ωt generated as discussed in Section 3.1.1. Here, h is
a measure of the spatial grid size, e.g., the maximum diam-
eter of the circumspheres of all tetrahedral elements. The
finite element space P1,h(Th) used for approximating the
pressure consists of functions that, within each tetrahedral
element, are linear polynomials, e.g., in x, y, z space, they
are functions of the form a0+a1x+a2y+a3z for constants
ai, i = 0, . . . , 3. Such functions are uniquely determined by
their values at the four vertices of a tetrahedral element.
For approximation of the components of velocity, we in-
stead use a higher-order finite element space, P2,h(Th), that
consists of quadratic polynomials inside each of the tetra-
hedra, e.g., in x, y, z space, they are functions of the form
b0+b1x+b2y+b3z+b4x

2+b5y
2+b6z

2+b7xy+b8yz+b9zx for
constants bi, i = 0, . . . , 9. These functions can be uniquely
determined by their values at the four vertices and the six
edge midpoints of a tetrahedron. See Figure 1 for an illus-
tration. In addition, the functions in both P1,h and P2,h are
required to be continuous across element faces. This pair
of elements for discretizing the Stokes equation is referred

Figure 1. The Taylor-Hood (P2-P1) element pair.

to as the Taylor-Hood element pair and satisfies the LBB
stability condition (or inf-sup condition) [Gunzburger , 1989]
required for stable approximations. We then define the con-
strained space (in case the lateral boundary condition is a
zero velocity condition)

�P2,h(Th) = {uh ∈ (P2,h(Th))
3 | uh|Γl∪Γb,fix = 0,

(uh · n)|Γb,sld = 0}.
(23)

Thus, given Ωt and Th, we seek functions uh ∈ �P2,h(Th)
and ph ∈ P1,h(Th) such that






�

Ωt

2ηuh ε̇uh : ε̇vh dx+

�

Γb,sld

β2
uh · vh ds−

�
Ωt

ph∇ · vh dx = ρ

�

Ωt

g · vh dx,

−
�

Ωt

qh∇ · uh dx = 0,

(24)

for all vh ∈ �P2,h(Th) and qh ∈ P1,h(Th). Due to the de-
pendence of η on the approximate velocity uh, (24) is a
nonlinear system of equations for the approximate velocity
and pressure uh and ph, respectively.

It is known that the error of the Taylor-Hood approxima-
tion for the linear Stokes equations (i.e. for Newtonian flu-
ids) is of third-order accuracy in the velocity u (i.e., O(h3))
and of second-order accuracy in the pressure p (i.e., O(h2))
[Bercovier and Pironneau, 1979]. We expect the orders of
approximations to be similar in the nonlinear setting; this is
partially verified by the numerical example of Section 4.1.

There are several reasons for not using even higher-order
elements, including the fact that solutions may not have suf-
ficient smoothness to take advantage of any additional ac-
curacy. However, the most important reason for not going
to even higher-order elements is that for realistic ice sheet
geometries, the boundary is given discretely, i.e., as a set of
points, and that boundary can be extremely irregular and
made up of very short segments. In the end, the lack of
exact knowledge of the boundary geometry is a controlling
factor in determining solution accuracy so that higher-order
elements are not necessarily beneficial.
3.1.3. Picard linearization

We use a simple and direct Picard-type iterative algo-
rithm to solve the nonlinear system (24). More sophisti-
cated linearization algorithms that promise faster conver-
gence (e.g., Newton’s method or quasi-Newton methods)
that require the evaluation of Jacobian or approximate Ja-
cobian matrices are also of interest. Compared to the simple
Picard method, the latter types of approaches often require
a better initial iterate for convergence. That is, the initial
iterate must be close to the desired solution of the nonlin-
ear system. As a result, the application of those methods
is often preceded by a few steps of a Picard-type iteration
to ensure that when one switches to the more sophisticated
and faster converging method, convergence will result.

The Picard iteration simply lags the velocity-dependent
viscosity ηuh in (24), i.e., at any iteration of the Picard
method, ηuh is evaluated using the approximate velocity so-
lution obtained at the previous step. Thus, starting with
an initial guess u

(0)
h

for the velocity approximation (which
is often taken to be u

(0)
h

= 0 and in this case ηu0
h
is set to

be certain positive constant), we have that, for j = 1, 2, . . . ,
u
(j)
h

and p(j)
h

are determined by solving the linear problem






�

Ωt

2η
u
(j−1)
h

ε̇
u
(j)
h

: ε̇vh dx+

�

Γb,sld

β2
u
(j)
h

· vh ds−

�
Ωt

p(j)
h

∇ · vh dx = ρ

�

Ωt

g · vh dx,

−
�

Ωt

qh∇ · u(j)
h

dx = 0.

(25)
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Finally, we set uh = u
(j)
h

when satisfactory convergence of
the Picard iterates is achieved in the sense that the resid-
ual relative to the approximate solution is smaller than a
prescribed tolerance. Using a simple heuristic asymptotic
analysis, we expect that the Picard iteration is linearly con-
vergent with an contraction constant n−1

n
, where n denotes

the exponent in the Glen’s law.
The Picard iteration produces, at each step, the linear

finite element problem (25) which is equivalent to a sym-
metric saddle-point problem of the type

�
F BT

B 0

��
�u
�p

�
=

�
�r
0

�
, (26)

where �u and �p denote the vectors of velocity and pressure
degrees of freedom, respectively. Thus, once (25), or equiv-
alently, (26) is assembled, there only remains the need to
define an efficient solver for that linear system. The linear
solver strategy we use is discussed in Section 3.2.
3.1.4. Implementation of the no-penetration condi-
tion on the sliding boundary

There remains the important problem of how to imple-
ment the sliding boundary condition (13), specifically how
the no-penetration condition u ·n = 0 is implemented along
boundaries that are not aligned with the coordinate axes.
The difficulty arises because such a condition involves, in
general, a linear combination of all three components of the
velocity. Our approach is based on the well-known technique
from Nastran Documentation [2009]. The main idea to use
a rotated coordinate system at each velocity node on the
sliding boundary Γb,sld. The coordinate system is chosen
to have one of the coordinate directions orthogonal to the
boundary Γb,sld at the node and the other two tangent to
the boundary. Then, the no-penetration condition is easy
to apply on the normal direction in this rotated frame, as
we now explain.

Assume that the number of velocity degrees of freedom
(DOF) is 3M , where M denotes the number of grid points
for velocity including the mid-sides of the tetrahedra. Then,
we rewrite the velocity vector �u in (26) in the form

�u =





u1

...
uM





with uk = (uk,x, uk,y, uk,z)
T . The no-penetration constraint

on Γb,sld is given by

nk · uk = 0 for all k ∈ σb,sld, (27)

where σb,sld denotes the set of indices of the DOF of u that
lie on the sliding boundary Γb,sld and nk denotes the outer
normal of the surface at the velocity grid point correspond-
ing to corresponding to uk.

For each DOF k ∈ σb,sld on the sliding boundary, a local
coordinate system is built aligned with the surface normal
vector nk and two orthonormal surface tangential vectors t1k
and t

2
k. Define the 3× 3 transformation matrix

Tk = (nk, t
1
k, t

2
k).

On the other hand, for the DOF that do not lie on the sliding
boundary, define the corresponding transformation matrix
to be the 3 × 3 identity matrix I, i.e., Tk = I if k /∈ σb,sld.
Then, we obtain the global transformation matrix for all k

T =





T1

. . .

TM



 .

Note that TTT = I. Inserting T into the linear system (26),
we have �

�F �BT

�B 0

��
��u
�p

�
=

�
��r
0

�
(28)

where

�F = TFTT , �B = BTT , ��u = T�u, ��r = T�r.

Now, let us use ��u as unknowns. Note that

��uk = (nk · uk, t
1
k · uk, t

2
k · uk)

T = (0, t1k · uk, t
2
k · uk)

T

for any k ∈ σb,sld. Thus, to apply the no-penetration con-
dition, we simply set, for k ∈ σb,sld, the first component of
each (��u)k to zero. Then, after solving (28) for ��u, we recover
the solution of (26) by simply setting �u = TT (��u).
3.1.5. Finite element discretization for the top sur-
face evolution

For the approximation of the top surface zs(x, y, t) dur-
ing evolution, we use the linear finite element space P1,h(Qh)
consisting of continuous piecewise linear polynomials defined
with respect to the two-dimensional triangular triangulation
Qh of the horizontal extent of the ice sheet, i.e., of ΩH .
Note that we assume that ΩH is fixed. Then, the fully dis-
cretized (in time and space) free-surface equation can be
described as follows: for k = 0, 1, . . . ,K − 1, given u

k

h, we
solve zk+1

s,h
∈ P1,h(Qh)

�

Γs,tk

zk+1
s,h

ψh ds =

�

Γs,tk

zks,hψh ds+

�

Γs,tk

∆t

�
uk

h,z − uk

h,x

∂zks,h
∂x

− uk

h,y

∂zks,h
∂y

+ bk
�
ψh ds

(29)
for all ψh ∈ P1,h(Qh). Thus, once u

k

h has been determined,
we can easily update the elevation of the top surface zk+1

s,h

and thus determine the new domain Ωtk+1 . Note that at
each time step, after the computation of the surface ele-
vation, the grid points are redistributed in the vertical di-
rection using the remeshing procedure discussed in Section
3.1.1.

3.2. Iterative linear solvers, preconditioners, and
parallelization

The large, sparse linear systems such as (28) arising from
a finite element discretization may have millions of un-
knowns in order to obtain high-resolution in the numeri-
cal simulations. Solving such large-scale systems is a chal-
lenging task due to the high demand on computing power
and memory. Iterative solution techniques for massive lin-
ear systems based on Krylov subspace methods (such as
GMRES and conjugate gradient methods) as well as pre-
conditioning techniques (such as block, multigrid, and in-
complete LU factorization preconditioners [Li and Demmel ,
2003]) are commonly used because the Krylov subspace it-
eration methods require only matrix-vector products. Here,
we discuss the parallel preconditioned iterative method we
use to solve the linear system (28) produced at each step of
the Picard iteration (25) that linearizes the nonlinear dis-
cretized system (24). Our choice of preconditioned linear
solver strategy is motivated by the saddle-point and possi-
bly very ill-conditioned nature of the coefficient matrix in
(28) [Elman et al., 2005].
3.2.1. Block preconditioner

Consider the block factorization of the coefficient matrix
in (28) given by

�
�F �BT

�B 0

�
=

�
I 0

�B �F−1 I

�� �F �BT

0 −S

�
, (30)
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where S = �B �F−1 �BT denotes the Schur complement. Ide-
ally, one would use the right factor

� �F �BT

0 −S

�
(31)

in (30) as a “perfect” right block preconditioner for the lin-
ear system (28). In fact, GMRES with this preconditioner
converges in at most two iterations. However, the applica-
tion of (31) as a preconditioner in an iterative method such
as GMRES requires the multiplication of a vector by the
inverse of that matrix, i.e., by the matrix

� �F−1 �F−1 �BTS−1

0 −S−1

�
=

� �F−1 0
0 I

��
I − �BT

0 I

��
I 0
0 −S−1

�
.

(32)

For the sake of efficiency, we want to avoid having to deal
with the application of the matrix S−1 = ( �B �F−1 �BT )−1

that, among other difficulties, would involve an application
of �F−1 [Silvester et al., 2001]. Fortunately, one can replace
S in (31) by any matrix that is spectrally equivalent to S
and not affect the performance of the the block precondi-
tioner (31). To this end, we replace S by the weighted mass
matrix Mη, where (Mη)i,j =

�
Ωt

(η
u
(j−1)
h

)−1φiφjdx and φi

denotes a pressure basis function. Note that Mη is deter-
mined using the previous Picard iterate for the velocity and
is fixed throughout the solution process for (30) that deter-
mines the new Picard iterate. The matrix Mη is easier to
apply compared to S and is spectrally equivalent to S [Ol-
shanskii and Reusken, 2006; Olshanskii et al., 2006]. Thus,
instead of (32), we use

�
�F−1 �F−1 �BTM−1

η

0 −M−1
η

�
=

� �F−1 0
0 I

��
I − �BT

0 I

��
I 0
0 −M−1

η

�

(33)

as an approximation to the inverse of the preconditioner (31)
so that, instead of (28), we solve the preconditioned linear
system

�
�F �BT

�B 0

�� �F−1 �F−1 �BTM−1
η

0 −M−1
η

��
��v
�q

�
=

�
��r
0

�
(34)

for ��v and �q, where

�
��u
�p

�
=

� �F−1 �F−1 �BTM−1
η

0 −M−1
η

��
��v
�q

�
. (35)

We apply a GMRES iteration to solve the linear system
(34). The application of �F−1 dominates the cost of that iter-
ation. The block-preconditioning strategy just described is
very effective when the subproblem involving �F−1 is solved
exactly. Of course, because of the large number of degrees of
freedom involved, we can only solve that subproblem itera-
tively, in which case the preconditioner is highly sensitive to
the residual of the �F−1 solution. The approach we take for
obtaining this solution is discussed in Section 3.2.2. Since
Mη is a symmetric, positive definite, very well conditioned
matrix the subproblem involving M−1

η is very easy to solve;
we use a standard preconditioned conjugate gradient matrix
for this purpose. Note that we solve the block subproblems
involving �F−1 (see Section 3.2.2) and M−1

η using iterative
methods so that those subproblems are solved inexactly; as
a result, the approximations of �F−1 and M−1

η at each GM-
RES iteration change as does their application to vectors.
For this reason, we use the FGMRES variant [Frayssé et
al., 2009; Saad , 1993] because it is specifically designed to
handle matrices that change at each iteration.
3.2.2. Solving the velocity subproblem

Each iteration of the FGMRES method requires the ap-
plication of �F−1 to a velocity vector iterate; for the sake
of efficiency, we would also like to use an iterative method
for this application. A solver for the subproblem involving
�F−1 should at the least properly handle the following three
obstacles:

1. anisotropy – the computing grid could have very thin
shaped elements, e.g., with aspect ratio up to 100;

2. highly variable viscosity – the nonlinear viscosity can
vary by a factor of 1000 across the computational domain;

3. symmetric gradient – the governing equation uses the
symmetric gradient ∇u + ∇u

T so that the subproblem is
more like a linear elasticity problem and not a vector Pois-
son problem.

The GMRES method with an algebraic multigrid (AMG)
preconditioning [Briggs et al., 2000] is a reasonable solver for
�F−1 because it can handle highly variable coefficients and
anisotropy; furthermore, it is a very efficient solver for linear
elasticity problems if a proper strategy is used. Geometric
multigrid methods could probably also play a role here be-
cause techniques such as semi-coarsening and line smooth-
ing are quite effective for anisotropic problems. However,
in the case of ice sheet modeling, the high variability of the
viscosity is the main difficulty that has to be overcome by,
e.g., using operator-dependent interpolation and Galerkin
coarse-grid operators, and these techniques all fall into the
AMG category. As described above, in our parallel solvers,
we use an AMG-preconditioned GMRES method as one of
the core steps in the solution of linear systems.
3.2.3. Parallelization

Parallel computing algorithms are often based on a di-
vide and conquer strategy to solve large-scale problems. We
adopt a domain decomposition method (DDM) [Douglas,
1996; Valli , 1999] for construction of the coefficient matrix
and the local preconditioning on distributed computer pro-
cessors. The finite element meshes are first partitioned into
a number of submeshes, one for each processor to be used
in the parallel calculation. This results in dividing the com-
puting domain Ωtk at the time step tk into interconnected
subdomains. By doing so, the original large-scale computing
problem is decomposed into a group of relatively simpler and
smaller problems on different processors. Our grid partition-
ing is done only in the horizontal directions using “METIS,”
a family of multilevel mesh partitioning algorithms [Karypis,
2003]; see Figure 2 for an illustration.

Based on this partitioning approach, we parallelize all
steps in our solution algorithm for (28), including all matrix-
vector multiplies encountered in the two GMRES type itera-
tions that are part of that algorithm. As described in Section
3.2.2, we use an AMG-preconditioned GMRES method as
the core steps in the solution of (28). The parallel AMG
solver BoomerAMG from the hypre package [Falgout and
Yang , 2002] is used in our parallel implementation. Boomer-
AMG has a great flexibility for choosing between various
parallel coarsening strategies and different interpolation op-
erators. The AMG settings greatly affect the efficiency of

Figure 2. Partition of a sample tetrahedral grid into 32
subgrids. Left: two-dimensional view from the top; right:
three-dimensional view.



X - 8 W. LENG ET AL.: A PARALLEL FEM STOKES ICE SHEET MODEL

the solver; choices for the AMG settings for different prob-
lems are discussed in Section 5.

Message Passing Interface (MPI) is taken as the parallel
environment. As discussed above, in our implementation, we
use the GMRES type methods in two places together with
block and AMG preconditioning techniques for the solution
of (34); in particular, the popular software package PETSc
[Balay et al., 2004] is employed in our parallel implemen-
tation due to its reliability and robustness. Some detailed
discussions are given in Section 5. We also note that, for
the above horizontal partitioning, parallel coarsening using
AMG will have fewer difficulties in handling inter-processor
boundary and data communication.

3.3. Summary of solver strategy for the nonlinear
discrete system

There are several iterations involved in the solution pro-
cess:

• the outermost Picard iteration for the nonlinear dis-
crete system that produces a sequence of linear systems; see
Section 3.1.3;

• each linear system is solved by an outer block-
preconditioned FGMRES iteration; see Section 3.2.1;

• in turn, each outer FGMRES iterate requires a second
GMRES iteration to solve the �F−1 subproblem; see Section
3.2.2;

• the inner GMRES iteration is preconditioned by AMG;
see Sections 3.2.2 and 3.2.3;

• all steps are parallelized as described in Section 3.2.3.
The stopping criterion for the outer Picard iteration is

that the relative residual is less than 10−4; for the outer
FGMRES iteration, the stopping criterion is that the rela-
tive residual is less than 10−6. Because the time-consuming
AMG preconditioner is applied in the inner GMRES iter-
ation for approximately solving the subproblem, we should
use as few iterations as possible. Thus, for the inner AMG-
preconditioned GMRES iteration we simply require the rel-
ative residual to reduce to roughly 10−1 (see Section 5 for
more specific settings). These choices are made to ensure
the accuracy and efficiency of the linear system solve.

4. Numerical tests

In this section, we demonstrate the high-order accuracy
of our parallel finite element Stokes ice sheet model using
an example with a known exact solution. We also provide
results of some validations through the established ISMIP-
HOM benchmark problems [Pattyn et al., 2008].

4.1. Convergence tests

The convergence tests are performed using an isothermal
Stokes ice sheet model with a manufactured exact solution;
in particular, we use a two-dimensional steady-state analyti-
cal solution proposed in Sargent and Fastook [2010] and then
extend it to three dimensions to illustrate the convergence
rates of our high-order (P2-P1) finite element solver, and to
compare its efficiency with the less accurate linear (P1-P1)
finite element method. We note that our example can be
regarded as a correction to the three-dimensional analyti-
cal solution constructed in Sargent and Fastook [2010], in
which the solution to a first-order partial differential equa-
tion for the velocity is incorrect. The test considers ice flow
over a domain of 0 ≤ x ≤ 80 km, s(x) ≤ z ≤ b(x), where
s(x) and b(x) define the top and bedrock surfaces of the ice
sheet, respectively. Following [Sargent and Fastook , 2010],
we choose the following typical values: Z = 1km as the
mean thickness of the ice sheet, L = 80 km as the length

of the ice sheet, U as the velocity in horizontal direction,
W as the velocity in the vertical direction, P as the mean
pressure, and δ = Z

L
as the (inverse) aspect ratio parameter.

Let the following relations hold: 1
2A

− 1
n (U

L
)

1
n = ρgZ = P ,

and WL

UZ
= 1. Then, the nondimensional variables (denoted

with hats) are introduced as:

z = Z�z, s = Z�s, b = Z�b, x = L�x,

µ =
1
2
A− 1

n

�
U
L

� 1−n
n

.

We set

�s(�x) = −�x tan(α)
δ

, �b(�x) = �s(�x)− 1 +
1
2
sin(2π�x) (36)

with α = 0.5◦ and δ = 1
80 . The exact solution for the ve-

locity and pressure is defined to be u = U�u, w = W �w, and
p = P �p, where





�u(�x, �z) =
cx

1− 1
2 sin(2π�x)

�
1−

�
−�z − �x tan(α)

1− 1
2 sin(2π�x)

�
λ
�
,

�w(�x, �z) = �u(�x, �z)
�

d�b
d�x

�s− �z
�s−�b

+
d�s
d�x

�z −�b
�s−�b

�
,

�p(�x, �z) = 2�µ∂�u
∂�x − (�s− �z)

(37)
with λ = 1 and cx = 10−6.

The constructed velocity components satisfy the continu-
ity equation (2). However, the velocity and pressure fields do
not necessarily satisfy the conservation of momentum equa-
tions (1) nor the top-surface boundary condition (11) with
patm = 0. Compensatory stresses are applied to make these
equations hold. For the momentum equations (1), we define

the compensatory stresses Σx =
P
Z

�Σx, Σz =
P
Z

�Σz, where






�Σx = δ
∂
�
2�µ ∂�u

∂�x + �p
�

∂�x +
∂
�
�µ
�
1
δ

∂�u
∂�z + δ ∂ �w

∂�x

��

∂�z ,

�Σz = δ
∂
�
�µ
�
δ ∂ �w

∂�x + 1
δ

∂�u
∂�z

��

∂�x +
∂
�
2�µ ∂ �w

∂�z + �p
�

∂�z − 1.

(38)
At the top surface, we define the compensatory stresses
τx = P�τx, τz = P�τz, where





�τx =
1

�
1 + δ2

�
d�s
d�x

�2

�
−δ

d�s
d�x

�
2�µ

∂�u
∂�x

+ �p
�

+ �µ
�

1

δ

∂�u
∂�z

+ δ
∂ �w
∂�x

��
,

�τz =
1

�
1 + δ2

�
d�s
d�x

�2

�
−δ

d�s
d�x

�
�µ
�
δ
∂ �w
∂�x

+
1

δ

∂�u
∂�z

��
+

�
2�µ

∂ �w
∂�z

+ �p
��

.

(39)

At the lateral boundaries, we impose periodic boundary con-
ditions. At the ice-bedrock boundary, u = U�u and w = W �w
are imposed.

Figure 3. Model error for the analytical solution tests
(L2 norm). Left: velocity error; right: pressure error.



W. LENG ET AL.: A PARALLEL FEM STOKES ICE SHEET MODEL X - 9

Table 1. Comparisons of errors in the velocity and pressure approximations by the high-order accurate P2-P1
finite element method and the low-order accurate P1-P1 finite element method.

Elements Mesh DOF Velo. Error Conv. Rate Pres. Error Conv. Rate

20×3×5 1,894 1.01× 101 - 3.25× 10−2 -
The P2-P1 40×3×10 7,144 7.27× 10−1 2.79 5.84× 10−3 1.48

80×3×20 27,724 4.71× 10−2 2.95 1.04× 10−3 1.49
Finite element 160×3×40 109,204 3.04× 10−3 2.95 1.83× 10−4 1.50

320×3×80 407,491 1.96× 10−4 2.96 3.24× 10−5 1.50
20×3×5 2,016 8.79× 101 - 4.25× 101 -

The P1-P1 40×3×10 7,216 1.42× 101 1.63 5.93× 100 1.84
80×3×20 27,216 2.39× 100 1.57 1.11× 100 1.41

finite element 160×3×40 105,616 4.15× 10−1 1.52 2.43× 10−1 1.20
320×3×80 416,016 7.30× 10−2 1.51 6.07× 10−2 1.00
640×3×160 1,651,216 1.29× 10−2 1.50 1.51× 10−2 1.01

Our Stokes solver applies to three-dimensional numer-
ical ice sheet modeling. In order to generalize the two-
dimensional problem above to three dimensions, we repli-
cate the two-dimensional x, z-plane grid to 3 layers along
the y-direction and impose periodic boundary conditions in
y.

We ran this experiment on structured uniform grids us-
ing both our parallel high-order accurate P2-P1 finite ele-
ment Stokes solver and the linear (penalized) P1-P1 finite
element solver proposed in Zhang et al. [2011], which uses
linear elements for both the velocity and pressure. The er-
rors between the model and the analytical solution, mea-
sured by the L2 norm, are reported in Table 1 and Figure
3. From these tables, we can see that the P2-P1 finite ele-
ment scheme is much more accurate and efficient than the
P1-P1 finite element method. For this test ice sheet exam-
ple, the convergence rate (with respect to the grid size) of
the velocity approximation using the P1-P1 element is only
about 1.50, whereas that for the P2-P1 element is nearly 3.0
as expected. Thus, as the grid size is reduced, errors using
the P2-P1 element reduce much faster than in the P1-P1
case. For example, in order to make the error of the velocity
approximation less than 5 × 10−2 ma−1, we need to use a
640×3×160 grid (1, 651, 216 DOF) for the P1-P1 finite ele-
ment method, but only a 80× 3× 20 grid (27, 724 DOF) for
the P2-P1 element method. Note that no grid refinement is
needed in the y direction because the exact two-dimensional
solution, when extended to three dimensions, is independent
of y.

4.2. ISMIP-HOM benchmark tests

Next, we test our parallel high-order accurate finite el-
ement nonlinear Stokes ice sheet model using the ISMIP-
HOM benchmark problems [Pattyn et al., 2008]. There are
six experiments (Experiments A-F) in this benchmark suite.
For all experiments, the horizontal extent of the ice sheet ΩH

is a rectangle and periodic boundary conditions are applied
in at least one of the horizontal directions. As described in
Section 3.1.1, we use tetrahedral grids produced from uni-
form two-dimensional structured triangular meshes. We use
the parameters given in Pattyn et al. [2008] for the ice sheet;
see Table 2.

Table 2. Parameters and constants for the ISMIP-HOM
benchmark experiments for the nonlinear Stokes ice sheet
model.
Name Symbol Value Units

Deformation A 10−16 (Exp. A-E) Pa−na−1

rate factor 2.140373× 10−17 (Exp. F)
Power law n 3 (Exp. A-E) –
exponent 1 (Exp. F)
Ice density ρ 910 kgm−3

Figure 4. Simulation results at different length scales
for Experiment A. From left to right: the components
ux, uy, and uz of the top surface velocity (ma−1); from
top to bottom: L = 5, 10, 20, 40, 80, 160 km.

4.2.1. Experiments A and B: ice flow with no-sliding

basal boundary condition

Experiment A considers ice flow over a bumpy bed on an

idealized geometry, i.e., we have a parallel-sided slab of ice

with a mean thickness of 1000m lying on a bed with a mean

slope of α = 0.5◦. The basal topography of the ice sheet

is then defined as a series of sinusoidal oscillations with an

amplitude of 500m:

zb(x, y) = zs(x)− 1000 + 500 sin(ωx) sin(ωy),
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Figure 5. Simulation results at different length scales
for Experiment B. From left to right: the components ux,
uy, and uz of the top surface velocity (ma−1); from top
to bottom: L = 5, 10, 20, 40, 80, 160 km.

where the top surface is given by

zs(x) = −x tanα. (40)

Here, (x, y) ∈ [0, L]× [0, L] and the basal bumps have a fre-
quency ω = 2π/L. A no-sliding boundary condition u = 0

is imposed at the bottom boundary of the ice sheet so that
Γb,sld = ∅. On the lateral boundaries, periodic boundary
conditions are imposed.

The set-up for Experiment B is the same except that the
basal topography does not vary in y, i.e., we have a rippled
bed given by

zb(x, y) = zs(x)− 1000 + 500 sin(ωx),

where zs(x) is again given by (40).
The ice sheet length L is set to increase by a factor of

two in each successive simulation, starting with L = 5 km
and ending with L = 160 km. Note that for smaller do-
main aspect ratios (smaller values of L), the non-SIA parts
of the model contribute relatively more to the stress bal-
ance, whereas for larger aspect ratios (larger values of L)
the solution for the Stokes model is essentially the same as
that for an SIA model [Pattyn et al., 2008]. Our numeri-
cal simulation results for the surface velocity components at
different length scales for Experiments A and B are shown
in Figures 4 and 5, respectively; 16 processors and a grid of

Figure 6. L2-norm of the surface velocity across the
bump at y = L/4 in Experiment A at different length
scales (solid lines with tick marks: our solution; dashed
curve with crosses: the reference solution [Gagliardini et
al., 2008]). From left to right and from top to bottom:
L = 5, 10, 20, 40, 80, 160 km.

Figure 7. L2-norm of the surface velocity across the
bump at y = L/4 in Experiment B at different length
scales (solid lines with tick marks: our solution; dashed
curve: the reference solution [Gagliardini et al., 2008]).
From left to right and from top to bottom: L = 5, 10,
20, 40, 80, 160 km.

192,000 tetrahedra resulting from a 40× 40× 20 structured
prismatic mesh was used. The L2-norm of the surface veloc-
ity across the bump at y = L/4 is shown and compared with
the reference solution from Gagliardini et al. [2008] in Fig-
ures 6 and 7. Our results match very well with the results
of Gagliardini et al. [2008], also used a Stokes finite element
model but with a finer 60× 60× 30 mesh for Experiment A
and a 240× 120× 30 mesh for Experiment B.
4.2.2. Experiments C and D: ice flow with basal slid-
ing condition

Experiments C and D consider the case of basal sliding
conditions. The geometrical setup of the ice sheet in Exper-
iment C is the same as that for Experiment A except that
α = 0.1◦ and the basal topography is flat, i.e.,

zb(x, y) = zs(x)− 1000, (41)

where zs(x) is again given by (40). Periodic boundary condi-
tions are still imposed on the lateral boundaries, but on the
bottom surface the basal friction boundary condition (13)
with

β2(x, y) = 1000 + 1000 sin(ωx) sin(ωy). (42)

is imposed everywhere so that Γb,fix = ∅.
The setup of Experiment D is the same as for Experiment

C except that the basal friction coefficient is set to

β2(x, y) = 1000 + 1000 sin(ωx). (43)
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Figure 8. Simulation results at different length scales
for Experiment C. From left to right: the components ux,
uy, and uz of the top surface velocity (ma−1); from top
to bottom: L = 5, 10, 20, 40, 80, 160 km.

Simulation results for the surface velocity components at
different length scales for Experiments C and D are shown
in Figures 8 and 9, respectively, using the same grid (except
the elevation in the z direction) as that used for Experi-
ments A and B. The L2-norm of surface velocity across the
bump at y = L/4 is shown and compared with the reference
solution in Figures 10 and 11. Again, our results compare
well with the results in Gagliardini et al. [2008].
4.2.3. Experiment E: Haut Glacier d’Arolla

Experiment E is a diagnostic experiment along the cen-
tral flowline of a temperate glacier in the Alps (the Haut
Glacier d’Arolla in Switzerland). The basic experiment and
geometry is described in Blatter et al. [1998]. Input for the
model includes the longitudinal surface and bedrock profiles
of the Haut Glacier d’Arolla.

We run Experiment E for two different basal boundary
conditions: (I) without sliding, i.e., the zero velocity condi-
tion u = 0 (or β2 = +∞) is imposed on the basal boundary;
(II) with a zone of sliding defined by

β2 =

�
0 if 2200m ≤ x ≤ 2500m,
+∞ otherwise.

(44)

For both cases, zero velocity conditions are imposed on the
lateral boundary in the x direction and periodic boundary
conditions are imposed in the y direction.

Two different grids are generated using the data set for
the Haut Glacier d’Arolla longitudinal profile, which consists

Figure 9. Simulation results at different length scales
for Experiment D. From left to right: the components
ux, uy, and uz of the top surface velocity (ma−1); from
top to bottom: L = 5, 10, 20, 40, 80, 160 km.

of 51 bedrock and surface elevation points. The first grid,
denoted by E 1 10, uses only one interval between the data
set points of the geometry of the profile, whereas the sec-
ond grid uses 10 intervals, denoted by E 10 10. Both grids
have 10 layers in the vertical direction. The geometry of the
glacier between neighboring data set points is not known,
so we use linear interpolation to approximate mesh vertices
at intervening points. The shape determined by linear in-
terpolation is not very smooth, which might be realistic in
some cases. For other applications, as suggested in Gagliar-
dini et al. [2008], smoother interpolation such as nonuniform
rational B-splines (NURBS) could be used instead.

Simulation results of Arolla flow without the sliding zone
are shown in Figures 12 (left) and 13. The surface velocities
for both grids are quite smooth and show good agreement
with the reference solution, which uses a 4 times finer grid
than E 10 10, but the basal shear stresses and the pres-
sure differences show certain oscillations and roughly match
the reference solution, especially for the coarse grid case.
Clearly one interval between two data points is not enough
and higher resolution is needed to capture all of the relevant
features. The solution on the fine grid E 10 10 is smooth
between two neighbor data points; however, near the data
points sudden changes still appear. We can conclude that
the solutions, especially of the high-order accurate numeri-
cal models such as the model proposed here, are quite sen-
sitive to the geometry; rough boundary descriptions such
as linear interpolation on the boundary could lead to so-
lutions with small oscillations. When complex realistic ice
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Figure 10. L2-norm of the surface velocity across the
bump at y = L/4 in Experiment C at different length
scales (solid lines with tick marks: our solution; dashed
curve with crosses: the reference solution [Gagliardini et
al., 2008]). From left to right and from top to bottom:
L = 5, 10, 20, 40, 80, 160 km.

Figure 11. L2-norm of the surface velocity across the
bump at y = L/4 in Experiment D at different length
scales (solid lines with tick marks: our solution; dashed
curve: the reference solution [Gagliardini et al., 2008]).
From left to right and from top to bottom: L = 5, 10,
20, 40, 80, 160 km.

sheets such as the Greenland ice sheet are considered, be-
cause their surface elevation and bed topography may not
be sufficiently smooth (or is not sampled densely enough),
use of coarse boundary descriptions and high-order numeri-
cal models could cause unstable oscillations at places where
the geometry is not smooth or has sharp changes. In that
case, we suggest using adaptive mesh refinement in these
locations or the use of NURBS during interpolation of data
onto the model mesh.

The results of Arolla flow with a sliding zone are shown in
Figures 12 (right) and 14. Because this experiment includes
a sliding zone, a singularity appears at the points where
friction parameter β2 suddenly changes from zero to infin-
ity. The results using the coarse grid E 1 10 are inaccurate;
as we can see, the velocity is relatively smaller and the peak
basal stress and pressure difference are smoothed out. For
the results using the fine grid E 10 10, the strong singulari-
ties of the basal stress and the pressure difference near the
singular points are more pronounced, but in smooth regions
our results show, for the surface velocity, agreement with
the reference solution from Gagliardini et al. [2008] that is
determined using a grid that is four times finer. In gen-
eral, with the types of finite element functions used in this
work, the singular behavior cannot be fully represented in
simple ways such as using local mesh refinement, although
that can help somewhat. Whereas the singularity in this
sample problem is somewhat unphysical, ongoing work will
focus on how better to model rapid and/or short-length scale
switches in basal boundary conditions.

Figure 12. Simulation results (view of the middle sec-
tion along the y-direction) for Experiment E. Left: Case
I – without sliding zone; right: Case II – with sliding
zone. From top to bottom: the components ux, uy, uz of
the velocity.

Figure 13. Simulation results for Experiment E with-
out a sliding zone (Case I). From left to right then from
top to bottom: horizontal top surface velocity (ma−1);
vertical top surface velocity (ma−1); basal shear stress;
difference between the isotropic and hydrostatic pressure
at the bed. Dotted curve: fine mesh; dashed curve with
crosses: coarse grid; solid curve with tick marks: the ref-
erence solution [Gagliardini et al., 2008].

4.2.4. Experiment F: a prognostic example
Experiment F is a prognostic example for which the top

surface is allowed to evolve in time according to equation
(10) until a steady state is reached such that

lim
t→+∞

∂zs
∂t

= 0. (45)

A slab of ice with mean ice thickness H(0) = 1000m is
considered, lying on a bed with a mean slope of α = 3.0◦.
This slope is maximum in x and zero in y. The initial top
surface elevation is

z(0)s (x, y) = −x tanα (46)

and the bedrock plane zb is parallel to the initial top surface
plane but is perturbed by a Gaussian bump such that

zb(x, y) = −H(0) − x tanα+ γ0e
−(x2+y

2)/σ2

(47)
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Figure 14. Simulation results of Experiment E with a
sliding zone (Case II). From left to right then from top
to bottom: horizontal top surface velocity (ma−1); ver-
tical top surface velocity (ma−1); basal shear stress; dif-
ference between the isotropic and hydrostatic pressure
at the bed. Dotted curve: fine mesh; dashed curve with
crosses: coarse grid; solid curve with tick marks: the ref-
erence solution [Gagliardini et al., 2008].

with γ = 0.1H(0) and σ = 10H(0). The horizontal do-
main of the ice sheet is taken to be a square [−L/2, L/2]×
[−L/2, L/2] with size L = 100H(0). It is also assumed that
there is no surface accumulation/ablation so that the ini-
tial Gaussian surface bump is allowed to relax over time.
Periodic boundary conditions are applied in the horizontal
directions and a sliding boundary condition is imposed on
the bottom with

β2 = (cAH(0))−1. (48)

We test two cases for Experiment F: (I) a non-slippery case,
i.e., c = 0, and (II) a slippery case with c = 1. Note that
in this experiment, because n = 1, the effective viscosity is
constant and is given by ηu ≡ (2A)−1 so that the Picard
iteration is not needed.

The time-dependent model is run using our parallel im-
plementation, again on the same tetrahedral grids (except
for the elevation in the z direction) as for Experiments A-D
with a time step of 5 years. We also note the z-coordinates
of the grid points are recalculated at each time step to main-
tain the mesh quality as mentioned in Section 3.1.1. In our
test, a steady state is assumed to be reached if the change of
the top surface elevation between two consecutive time steps
is small enough, e.g., less than 10−2 m. From our simulation,
the time it takes for the thickness of the ice sheet to be sta-
bilized in the non-slippery case and slippery case are about
375 and 1245 years, respectively. The steady state results
and convergence history are shown in Figures 15–17. Our
results show good agreement with the reference solutions in
Gagliardini et al. [2008]; Martin et al. [2003].

5. Performance and scalability

We now summarize the computational performance of
our parallel high-order accurate finite element Stokes model,
which performed well in all of the experiments discussed
above. We first present tests of the linear system solver
strategy we use. As described in Section 3.1.1, a grid of
192,000 tetrahedra was produced based on a structured pris-
matic mesh for a 40 × 40 × 20 decomposition of the do-
main; the resulting number of degrees of freedom for the

Figure 15. Simulation results for the steady state in Ex-
periment F viewed from above the top surface. Left: Case
I – non-slippery case; right: Case II – slippery case. Top
to bottom: surface elevation and velocity components ux,
uy, and uz.

discretized system is 827,604. Three different AMG param-
eter settings were used, as listed in Table 3; the first setting
was also used in Burstedde et al. [2009]; May and Moresi
[2008]. The predetermined settings of the AMG precondi-
tioner and numbers of the inner GMRES iterations (NOIs-
innerG) used in Experiments A-D are listed in Table 4. We
note that the selections are based on our experiences (the
relative residuals roughly reduce to 10−1). The number of
the outer FGMRES iterations of the linear system solver on
the mesh of size 40× 40× 20 are listed in Table 5.

From the table it is easy to see that our linear solver
worked very well for all experiments, i.e., it used only a few
outer FGMRES iterations. It is also clear that problems
with sliding boundary conditions are more difficult than the
ones with a no-sliding boundary condition and require 3 to
6 times the number of inner GMRES iterations to effect
similar reductions in the residual of the subproblem solver.
This is usually due to the linear system being more poorly
conditioned for sliding than for no-sliding basal boundary
conditions.

In parallel computing, two types of scalabilities are com-
monly used to measure the performance. The first one is
strong scalability Sstrong, which reflects how the solution
time varies with the number of processors for a fixed prob-
lem size. The second is weak scalability Sweak, which shows
how the solution time varies with the number of processors
for a fixed problem size per processor. Because we used four
processors as the smallest number of processors in all tests,
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Table 3. The BoomerAMG parameter setting groups used in our parallel solver.

Parameter Setting Group a b c

Coarsening PMIS PMIS Falgout
Interpolation extended extended classical
Truncation factor 0.3 0.3 0
Strong threshold 0.5 0.9 0.5
Max entries per row for interp 5 5 0
Number of Functions 3 3 1
Coarsest Relax Type direct direct direct

Table 4. The predetermined AMG setting groups (defined in Table 3) and numbers of the inner GMRES itera-
tions for solving the subproblem used in Experiments A-D.

Length Scale Exp. A Exp. B Exp. C Exp. D
AMG NOIs- AMG NOIs- AMG NOIs- AMG NOIs-
Setting innerG Setting innerG Setting innerG Setting innerG

L = 5km a 1 a 1 c 3 c 6
L = 10km a 1 a 1 c 3 c 6
L = 20km a 1 a 1 c 3 c 6
L = 40km a 1 b 1 c 3 c 6
L = 80km a 1 b 1 c 3 c 6
L = 160km a 1 b 1 c 3 c 6

Table 5. Numbers of the outer FGMRES iterations of the preconditioned solver on the mesh of size 40× 40× 20
in Experiments A-D.

Length Scale Exp. A Exp. B Exp. C Exp. D

L = 5km 27 46 61 120
L = 10km 26 37 34 76
L = 20km 24 48 23 58
L = 40km 30 49 15 56
L = 80km 48 48 16 60
L = 160km 50 47 28 103

Table 6. Results of the weak scalability tests using our parallel FEM solver for Experiment A with L = 80 km.

Mesh Size Number of DOF Number NOIs- NOIs- Total Scalability
Tetrahedra of Procs outerFG nonlinear Time(s) Sweak

20 × 20 × 20 48,000 208,644 4 62 25 622 -
40 × 40 × 20 192,000 827,604 16 51 25 598 1.040
80 × 80 × 20 768,000 3,296,724 64 33 25 570 1.091

160 × 160 × 20 3,072,000 13,159,764 256 32 25 694 0.896
320 × 320 × 20 12,288,000 52,585,044 1024 34 25 1146 0.543

Table 7. Results of the strong scalability tests using our parallel FEM solver for Experiment A with L = 80 km.
Mesh size: 80 × 80 × 20, number of tetrahedral elements: 768,000, number of DOF: 3,296,724.

Number of Memory Usage Average Time(s) Total Scalability
Processors per Core(MB) per Picard Ite. Time(s) Sstrong

4 5058 301 8778 -
8 2653 126 3702 1.186
16 1422 63 1857 1.182
32 823 33 997 1.101
64 487 18 526 1.043
128 339 10 301 0.911
256 267 8 236 0.775

we calculated Sstrong and Sweak as

Sstrong =
4T4

nTn

, Sweak =
T4

�Tn

, (49)

where Tn denotes the solution time with n processors when
the problem size is fixed and �Tn the solution time with n
processors when the problem size is similarly scaled along
with the number of processors. A value of Sstrong or Sweak

greater than 1.0 implies super-linear scaling.
The first test is for weak scalability, i.e., we test our solver

with proportionally increasing number of processors but a
fixed subproblem size per processor. Up to 1024 proces-
sors are used to test our solver using Experiment A with
L = 80 km and the results are reported in Table 6. In this

table, ”NOIs-nonlinear” denotes the number of Picard iter-
ations and “NOIs-outerFG” the number of outer FGMRES
iterations used for solving the linear system at each Picard
iteration. From the table we can see that the number of
iterations the linear solver used for different problem sizes
is almost constant, and the total running times grow very
slow as the number of processors increases until the last case
with 1024 processors. This clearly shows both our precon-
ditioning algorithm and parallel implementation result in
good weak scalability.

The second test is for strong scalability, i.e., we test our
solver with increasing number of processors for a fixed to-
tal problem size. We fixed the structured mesh using the
80 × 80 × 20 decomposition of the domain; the number of
DOF is 3,296,724. Results are reported in Table 7. For all
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Figure 16. Simulation results for the steady state in
Experiment F – Case I (non-slippery case) viewed along
the central line. From left to right then from top to bot-
tom: top surface elevation; surface velocity component
ux; surface velocity component uz; maximum change of
the surface elevation in time. Dotted curve with crosses:
our solution; dashed curve with crosses: the reference
solution [Martin et al., 2003].

Figure 17. Simulation results of the steady state in Ex-
periment F – Case II (slippery case) viewed along the cen-
tral line. From left to right then from top to bottom: top
surface elevation; surface velocity component ux; surface
velocity component uz; maximum change of the surface
elevation in time. Dotted curve with crosses: our solu-
tion; dashed curve with crosses: the reference solution
[Martin et al., 2003].

the tests with different number of processors, the number
of outer FGMRES iterations is 33 and the number of non-
linear (Picard) iterations is 25. From the table it is easy see
that, when the number of processors is no more than 32,
the total computing times decrease by more than a factor of
two as the number of processors doubles, implying a super
linear scaling. For the rest of the cases, the computing time
decrease is not so large but is still significant. This shows
that our parallel solver has excellent strong scalability as
well.

6. Concluding remarks

In this paper, we developed a parallel, three-dimensional,
finite element ice sheet model based on the nonlinear Stokes

system. Our finite element model features high-order
computational accuracy and also features scalable parallel
solvers.

Future efforts will be devoted to implementing the three-
dimensional nonlinear Stokes finite element model on vari-
able resolution grids and in particular, for modeling of the
Greenland and Antarctica ice sheets. Note that our tetra-
hedral meshing strategy based on prismatic grids is directly
applicable to grids constructed using variable resolution in
the horizontal directions and layers in the vertical direc-
tion. Future efforts will also focus on energetics coupling,
the implementation of other sliding/friction basal laws (such
as Coulomb friction), and treatment of the ice-ocean inter-
face. We will also examine methods to ameliorate the singu-
larity that accompanies sudden transitions from no-sliding
to sliding/friction basal boundary conditions. Finally, we
will explore several computational implementation improve-
ments for our ice sheet model, including the use of Newton’s
method for accelerating the nonlinear solution process, the
impact of using adaptive NURBS refined elements in Exper-
iments E and F to produce better and smoother solutions,
and designing better preconditioning strategies for problems
with sliding boundary conditions to produce more efficient
solvers.
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